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The perturbation theory of matrices is applied to ray transfer matrices (RTMs) to describe an optical com-
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strength is provided using condition numbers and absolute errors for the perturbed RTM. An application
to a single small aberration is presented, and the results are compared with those of the diffraction theory
of aberrations.
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In geometrical imaging theory, a perfect optical system
provides a one-to-one correspondence between object and
image points and object and image planes. An optical
component essentially maps a point in its object space
to its conjugate point in the image space, with rays de-
picting the action of the component. Theory and prac-
tical applications are expected to differ because geomet-
ric optics is an approximation. These differences are in
the form of image imperfections or aberrations that have
been studied extensively[1−3]. The primary aberrations
of an optical element[1] and the stability of resonators
and periodic focusing systems[2,3] and misaligned cas-
caded optical elements[4] have been described using ray
transfer matrices (RTMs). These matrices are used to
describe and analyze optical elements and systems[4].

We propose an approach to quantifying imaging imper-
fection using perturbed RTMs. The approach allows the
decoupling of the optical component and any associated
imperfection, which is particularly important in toler-
ance specifications and component performance. In this
letter, we present a matrix perturbation approach to de-
scribe an optical component with known aberration. We
begin with the following standard form of a perturbed

matrix M
[5]
A :

MA = M + E, (1)

where M is the invertible RTM of an optical compo-
nent with no aberration and E is the perturbation to
M. This expression describes the same optical compo-
nent but with an aberration represented by the small
changes in M due to E. We will take ||E||2 << ||M||2
as the condition for the smallness of the perturbation,
where || · ||2 is the matrix 2-norm[5]. To assess the
effect of the aberration, we quantify the perturbation in
Eq. (1).

One way of quantifying the perturbation is to use eigen-
values, a popular means of analyzing systems described
by matrices. In optics, eigenvalue analysis has been
used in the stability of periodic focusing elements and

alignment of optical resonators[4,6,7]. However, the main
drawback of using eigenvalues is that they are defined us-
ing a mathematical singularity[8]. Hence, their appropri-
ateness in describing something physical is scrutinized.
For this reason, we use other means of assessment and
turn to scalar metrics used predominantly in matrix per-
turbation theory[5]. Some examples of these metrics in-
clude the relative error, perturbed eigenvalue condition
number, absolute error ae(MA,M) defined as[5]

ae(MA,M) = ||MA − M||2, (2)

and the matrix condition number κ(M) defined as[5]

κ(M) = ||M||||M−1||2. (3)

In this letter, the latter two metrics shall be used to
quantify the perturbation extent. The imaging is said
to be perfect when no perturbation to M exists, that is,
E=0. A large ae(MA, M) therefore amounts to greater
perturbation, which, in turn, is associated with greater
imaging imperfection.

To illustrate the use of the metrics ae(MA,M) and
κ(M) in assessing imaging imperfections, we consider
a Gaussian beam passing through a lens of fixed focal
length. The input beam waist is incident at the center
of the lens, and the output beam waist and width are
observed on a viewing screen whose distance from the
lens can be varied. This experiment is equivalent to a
fixed focal plane and a varying focal length and can be
used to model defocus. We will be determining the beam
width and waist position.

In Fig. 1(a), we plot the full-width at half-maximum
(FWHM) of the beam in various defocus and focus states.
The inset of Fig. 1(a) shows that the beam width changes
as the focal plane is moved away from the focal length
of the lens. The gray values indicate intensity, and the
beam is filtered to avoid saturation. The surface profiles
in Fig. 1(b) show a beam in the unfocused and focused
states, indicating that beam narrowing does not occur in
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Fig. 1. Focusing of a Gaussian beam. In the sequence of
captured beam profiles, the focal plane is moved toward the
lens with the last image of the beam profile corresponding
to a focused beam. Consistently, the first two or three pix-
els are not illuminated by the beam as evidenced by the zero
gray values. (a) Beam width expands when beam is viewed
away from focus. The beam waist is the narrowest part of the
beam corresponding to focus. (b) Surface profiles of beam in
unfocused (top) and focused (bottom) states.

a particular transverse direction.
Pixel counting is a convenient, straightforward proce-

dure for describing beam expansion using, for example,
the focused beam as reference. Such analysis measures
how large the beam is compared with the reference. One
limitation of pixel counting is the capturing element res-
olution, which is important when studying infinitesimal
beam expansion. Another way of measuring the spot size
evolution is through FWHM[4,6]. Unlike purely measur-
ing the beam width through pixels, this quantity makes
use of an intrinsic property of the beam and, in this re-
gard, is qualitatively similar to κ(MA), which contains
information regarding the optical component and pertur-
bation.

Assuming that the lens images imperfectly by shifting
its focus along the optic axis, we can express the RTM
for small changes in f in standard form

MA =

(

1 0

−
1

f + ∆f
1

)

≈

(

1 0

−
1

f
1

)

+

(

0 0
∆f/f2 0

)

= M + E, (4)

where M is the RTM of a thin lens[4,6,7] and ∆f is the
small change in f contained in the perturbation matrix
E. This lens may represent a tunable lens whose focal
length can be varied continuously by essentially changing
the amount of defocus[9]. From Eqs. (2) and (4), we can
obtain ae(MA,M) = ||E||2 = [(∆f) / f2]. This result in-
dicates, for this example, the linearity of ||E||2 with ∆f .
Note that ∆f= 0 when no defocus exists. Moreover, we
arrive at the consistent result ||E||2 = 0, suggesting that
||E||2 can be used to describe the shift in beam waist.
As shown in Fig. 2(a), the change in the focus location
is a monotonically increasing function of ||E||2. Thus,
the focus does not change when E = 0 and ||E||2 grows
with defocus ∆f . The red line in Fig. 2(a) is a linear fit
indicating that within reasonable measurable tolerances,
||E||2, as a first approximation, is linear in defocus.

Using Eqs. (3) and (4), we have κ(MA) = 2 +
[(f + ∆f)−2], which illustrates an important character-
istic of these metrics. The physically greater magnitude
of ∆f corresponds to moving away from the focal point.
One disadvantage of quantitative metrics is that position
information is removed. This information is important,
for example, when one needs to know if the image is
formed in front or behind an optical component. In our
example, one can move toward the lens or away from it.
Unlike the absolute error, the condition number κ(MA)
takes into account both the change in the RTM and the
RTM itself. The same goes for FWHM, which does not
merely measure the beam width in terms of illuminated
pixels. The change in beam width is a monotonically
decreasing function of κ(MA), as shown in Fig. 2(b).
For the focused beam, ∆f = 0 and κ(MA) = κ(M) and
κ(M) → 2 as ∆f → ∞. In this limit, MA tends to the
2×2 identity matrix representing ray refraction between
two media of the same refractive indices[4,6,7]. The red
line in Fig. 2(b) is a linear fit, indicating that, as a first
approximation, beam width changes can be described by
κ(MA).

To describe the sensitivity of M to perturba-
tions, we consider the condition number κ(MA).
If ||M−1||2||E||2 < 1, then one has ||M−1

A ||2(1 –

||M−1||2||E||2) 6 ||M−1||
[10]
2 . This result implies that

κ(MA)(1 – ||E||2||M
−1||2) 6 κ(M) [1 + (ae(MA,

M)/||M||2)], with κ(MA) = κ(M), if E = 0. Assuming
||E||2||M

−1||2, ||E||2/||M||2 < ε ∈ (0, 1), we can obtain

1 − 2ε <
κ (MA)

κ (M)
6

1 + ε

1 − ε
. (5)

Equation (5) provides an estimate for κ(MA) using
bounds that are functions of E. In Fig. 3, we plot
the upper and lower bounds of (κ(MA)/κ(M)) as a
function of ε ∈ (0, 1). It illustrates how smaller aberra-
tion strength yields a correspondingly small deviation of
κ(MA) from κ(M). The refined restrictions on ||E||2 are
interpreted as a measure of how small the aberration is.
However, Eq. (5) only provides upper and lower bounds
for κ(MA) and is inadequate for exactly determining the
trend of κ(MA), which is a function of E. In Fig. 2(b),
the narrow beams indicated by low normalized values
are associated with low κ(MA). Thus, as the beam ex-
pands, the quantity (κ(MA)/κ(M)) increases, making
this treatment qualitatively dissimilar to the Strehl ratio
in the diffraction theory of aberrations[1,2].

Fig. 2. (Color online) Quantitative measures of image imper-
fection using f = 1 unit with defocus increments of ∆f =
0.10 units for six increments. (a) Beam waist shift represent-
ing a variation of focal length and (b) beam width described
by condition number.
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Fig. 3. Upper and lower bounds for the ratio
((κ(MA)/κ(M))) for ε ∈ (0, 0.5). The effect of ε on the
bounds of κ(MA) is more evident with larger ε values.

In conclusion, using MA has more physical significance
because it contains information on M and the perturba-
tion. One finds MA operationally, whereas M is known
a priori and E is calculated from Eq. (2). The imper-
fection in the perturbation is different from the optical
component. Thus, scalar metrics describe the extent of
image imperfection relative to an optical component with
no imperfection. Furthermore, in systems with two or
more components, the proposed perturbation approach
can be used to determine how much imperfection is as-

sociated with each system component.
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